
Open access�

   1Strange G, et al. Open Heart 2023;10:e002265. doi:10.1136/openhrt-2023-002265

	► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http://​dx.​doi.​org/​10.​
1136/​openhrt-​2023-​002265).

To cite: Strange G, Stewart S, 
Watts A, et al. Enhanced 
detection of severe aortic 
stenosis via artificial 
intelligence: a clinical cohort 
study. Open Heart 
2023;10:e002265. doi:10.1136/
openhrt-2023-002265

Received 18 January 2023
Accepted 30 June 2023

1Cardiology, Heart Research 
Institute Ltd, Newtown, New 
South Wales, Australia
2The University of Notre Dame 
Australia, School of Medicine, 
Fremantle, Western Australia, 
Australia
3Institute for Health Research, 
The University of Notre Dame 
Australia, Fremantle, Western 
Australia, Australia
4School of Medicine, Dentistry & 
Nursing, University of Glasgow, 
Glasgow, UK
5Echo IQ Pty Ltd, Sydney, New 
South Wales, Australia
6School of Medicine, The 
University of Notre Dame 
Australia, Fremantle, Western 
Australia, Australia

Correspondence to
Dr Geoff Strange; ​gstrange@​
neda.​net.​au

Enhanced detection of severe aortic 
stenosis via artificial intelligence: a 
clinical cohort study

Geoff Strange  ‍ ‍ ,1,2 Simon Stewart  ‍ ‍ ,3,4 Andrew Watts  ‍ ‍ ,5 David Playford  ‍ ‍ 6

Valvular heart disease

© Author(s) (or their 
employer(s)) 2023. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Objective  We developed an artificial intelligence 
decision support algorithm (AI-DSA) that uses routine 
echocardiographic measurements to identify severe aortic 
stenosis (AS) phenotypes associated with high mortality.
Methods  631 824 individuals with 1.08 million 
echocardiograms were randomly spilt into two groups. 
Data from 442 276 individuals (70%) entered a Mixture 
Density Network (MDN) model to train an AI-DSA to predict 
an aortic valve area <1 cm2, excluding all left ventricular 
outflow tract velocity or dimension measurements 
and then using the remainder of echocardiographic 
measurement data. The optimal probability threshold 
for severe AS detection was identified at the f1 score 
probability of 0.235. An automated feature also ensured 
detection of guideline-defined severe AS. The AI-DSA’s 
performance was independently evaluated in 184 301 
(30%) individuals.
Results  The area under receiver operating characteristic 
curve for the AI-DSA to detect severe AS was 0.986 (95% 
CI 0.985 to 0.987) with 4622/88 199 (5.2%) individuals 
(79.0±11.9 years, 52.4% women) categorised as ‘high-
probability’ severe AS. Of these, 3566 (77.2%) met 
guideline-defined severe AS. Compared with the AI-derived 
low-probability AS group (19.2% mortality), the age-
adjusted and sex-adjusted OR for actual 5-year mortality 
was 2.41 (95% CI 2.13 to 2.73) in the high probability AS 
group (67.9% mortality)—5-year mortality being slightly 
higher in those with guideline-defined severe AS (69.1% 
vs 64.4%; age-adjusted and sex-adjusted OR 1.26 (95% 
CI 1.04 to 1.53), p=0.021).
Conclusions  An AI-DSA can identify the 
echocardiographic measurement characteristics of AS 
associated with poor survival (with not all cases guideline 
defined). Deployment of this tool in routine clinical practice 
could improve expedited identification of severe AS cases 
and more timely referral for therapy.

INTRODUCTION
Affecting millions worldwide, aortic stenosis 
(AS) is the most common, acquired form of 
valvular heart disease managed in clinical 
practice.1 When left untreated, there are 
substantial societal costs attributable to high 
rates of premature mortality and quality-
adjusted life years lost across the entire spec-
trum of disease.2 This is important when 

considering the long-held concept that only 
severe symptomatic cases of AS should be 
referred to a specialist heart care team for 
aortic valve replacement.3–5 Consistent with a 
broader phenotype of ‘high-risk’ AS (encom-
passing individuals undergoing mal-adaptive 
changes to their cardiac structure/function 
in response to their failing aortic valve),6 
there is increasing evidence that both asymp-
tomatic severe and moderate AS are also asso-
ciated with high rates of mortality.3 4 7 Accord-
ingly, the capacity to improve survival rates in 
such individuals via interventional strategies 
is being tested in prospective randomised 
trials.8

Beyond recognising the prognostic impli-
cations of all forms of AS, there is increasing 
clinical tension to apply optimal and timely 
strategies to rapidly detect and definitively 
treat high-risk individuals.9 However, even 
within the most well-resourced healthcare 
settings, this is problematic.10 Consequently, 
the potential for machine learning/artificial 
intelligence (AI) systems to systematise the 
detection, treatment and prognostication 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Many people with moderate-to-severe aortic steno-
sis (AS) are at risk of dying without timely evidence-
based care.

WHAT THIS STUDY ADDS
	⇒ We developed and tested an artificial intelligence 
decision support algorithm to detect the phenotype 
associated with severe AS, in addition to clinical 
guideline-defined cases of severe AS from their 
routine echocardiographic report. The algorithm 
rapidly identified these high-risk cases with excel-
lent performance and identified patients with a high 
risk of death.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This algorithm has the capacity to be uniformly 
applied as an automated alert system for high-risk 
patients with AS in routine clinical practice.
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of AS is being explored via the synthesis of directly 
acquired and reported clinical data (including from 
cardiac auscultation,11 mechanical sensors,12 echocar-
diography,13 14 computed axial tomography/MRI15 and 
electronic medical records.16

We evaluated the performance of a newly refined arti-
ficial intelligence decision support system (AI-DSA)13 to 
identify adults with more severe forms of AS associated 
with high-rates of mortality. The reference standard for 
the performance of the AI-DSA was severe AS as defined 
by current guidelines.17 18 We further sought to explore 
the capacity of the AI-DSA to identify those with char-
acteristic moderate-to-severe AS and elevated risk of 
mortality.7 We also sought to determine the ‘minimum’ 
echocardiographic parameters routinely reported in clin-
ical practice required by the AI-DSA to operate efficiently.

METHODS
The data that support the findings of this study are 
available from the corresponding author on reasonable 
request.

Study design
In this retrospective, patient cohort and outcome analysis, 
we evaluated the performance of a stand-alone AI-DSA to 
detect individuals with high probability of the severe AS 
phenotype.17 18 The AI-DSA scrutinised the same echo-
cardiographic information used to evaluate potential 
heart disease as part of the routine clinical practice. The 
subsequent pattern of (actual) 5-year all-cause mortality 
according to the AI-DSA outputs (including a feature to 
automatically identify guideline-defined severe AS within 
in the AI-DSA-identified population) was then compared 
independently. Where appropriate, this study conforms 
to the ‘Standards for Reporting Diagnostic accuracy 
studies’ guidelines.19

Data sources
As described in greater detail previously,2 7 9 this unique 
resource is a vendor agnostic source neutral database 
containing measurement and text outputs from multiple 
echocardiographic laboratories Australia-wide. Source 
data are derived from individuals being routinely inves-
tigated/managed with heart disease within Australia’s 
multicultural population via its well-resourced, universal 
healthcare system. Only those records with insufficient 
demographic details to enable highly secure/anonymised 
individual data linkage to the well-validated National 
Death Index20 were excluded.

For these analyses, we used the latest version of the 
mortality-linked database containing 1 077 145 studies 
from 631 824 individuals aged ≥18 years during the 
period from 29 May 1985 to 26 June 2019. Individual all-
cause mortality was established during a median (IQR) 
of 4.3 (2.3–7.3) years follow-up from last echocardiogram 
to a census date of 21 May 2019). A total of 280 indi-
vidual echocardiographic variables (online supplemental 
material pp.1–11), representing base measurements 

and calculations as part of a standard echocardiography 
examination, were provided for the AI-DSA training and 
validation. Mortality status was not provided and did not 
form part of the AI-DSA training. Individuals with prior 
aortic valve replacement were excluded.

Development of the AI model
The data set was split (ratio 70:30) into two separate 
groups, one for model training and the other for test/
validation of the trained model (online supplemental 
material pp.12–18). As part of a six-step process, a modi-
fied Mixture Density Network was used to train on the 
442 276 individuals (70%) and their 754 503 echocardi-
ograms randomly assigned to the training set. As part 
of this development process, we were able to directly 
address the sparsely filled data sets typical in clinical 
echocardiography. Critically, the left ventricular outflow 
tract (LVOT) data relevant to the continuity equation 
(specifically, all velocity, gradient, velocity time integral, 
dimension and area) were withheld from the AI-DSA test 
set model. The MDN model was then used to predict the 
probability of severe AS (after being trained on the entire 
echo) defined by an aortic valve area (AVA) <1 cm2. The 
trained model was designed to be general purpose and 
can perform inference using arbitrary sets of available 
measurements.

Development of the guideline-quarantined patients
Subsequently, a guideline analysis was developed using 
the current AS diagnostic guidelines, to quarantine 
severe patients with AS from the AI-DSA-derived pheno-
type, if the peak velocity was ≥4.0 m/s, the mean gradient 
was ≥40 mm Hg and/or the AVA≤1.0 cm2.

Evaluating the model
Once developed, the model’s performance was inde-
pendently evaluated using data from the remaining 
189 548 (30%) individuals and their 322 642 echocardio-
grams (online supplemental material pp.19–21) that had 
never been seen by the AI-DSA during training and were 
linked to mortality outcomes. As an initial diagnostic, 
selected groups of related measurements were withheld, 
and the AI predictions were evaluated against known 
values. These results indicated that the predicted meas-
urements had minimal bias and surprisingly low error 
bounds considering the heterogeneous nature of the 
data and that key information (ie, LVOT data) had been 
intentionally removed.

Testing the AI-DSA
Using the Mixure Density Network (MDN)-predicted 
output for AVA:

AVA=(π(LVOTd)2/4)x(LVOTVTI/AVVTI)
where LVOT=left ventricular outflow tract, AV=aortic 

valve, d=dimension and VTI=velocity time integral and 
using the cumulative distribution function to deter-
mine what percentage of the distribution falls above the 
severe AS threshold, we calculated the probability of an 
AVA <1 cm2—online supplemental material pp.22–27. 
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Curves for receiver operating characteristic (ROC) and 
areas under the ROC (AUROC) were then generated 
to evaluate the performance of the severe AS classifier, 
and the probability threshold value was adjusted for a 
maximum f1-score calculation. Analyses were conducted 
on the entire test group and then left ventricular ejec-
tion fraction (EF) thresholds of <30% (4203 cases) and 
<50% (18 799 cases)). For testing the performance of the 
AI-DSA, mortality outcome data were added to the anal-
ysis database.

Individual classification according to AI-DSA outputs
As shown in figure 1, after excluding those with an AV 
replacement, the overall performance of the AI-DSA, both 
in terms of determining the severity of AS17 18 at their last 
echocardiogram and subsequent survival, was assessed in 
184 301 individuals aged >18 years. Three main groups 
(incorporating five subgroups) were identified from the 

AI-DSA outputs. The first subgroup comprised those with 
insufficient data (age, body surface area, aortic valve 
peak velocity and EF) to enable the AI-DSA to produce a 
probability output. To reflect real-world clinical practice, 
these were automatically defaulted into the main ‘low-
probability’ group. Those individuals with sufficient data, 
according to the f1-derived threshold of 0.235 (below and 
above), were initially categorised as ‘low’ or ‘high’ prob-
ability of the severe AS phenotype identified by the AI. 
Within the ‘low’ probability group, a third main group 
was prospectively derived from those with sufficient data 
and a probability score below the f1-derived threshold. 
Specifically, applying 98.25th to 98.50thh percentile of 
probability distribution below the f1-derived threshold, 
a probability range of patients with ‘moderate-to-severe’ 
AS was identified (probability >0.0625 to <0.235). The 
final safety function then automatically identified 

Figure 1  Flow chart of the training, evaluation, and testing of the AI-DSA to detect severe forms of AS. This schema shows 
the distribution of cases/investigations from the NEDA cohort used to train and evaluate the AI-DSA (investigation-based, no 
mortality data) and then test/assess its performance in accurately detecting the severe form of aortic stenosis associated with 
high 5-year mortality (individual-based). The highest F1 score was chosen as the probability at the peak of the precision/recall 
relationship, corresponding to a probability of 0.235. The moderate-to-severe aortic stenosis group corresponds to a probability 
output of>0.0625 (98.25 to 98.5 percentile of probability spectrum below the f1-derived threshold). AI-DSA, Artificial Intelligence 
Decision Support Algorithm; AS, aortic stenosis; AV, aortic valve; BSA, body surface area, F/U, follow-up; LVEF, left ventricular 
ejection fraction; LVOT, left ventricular outflow tract; NEDA, National Echo Database of Australia; pct, percentile.
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guideline-based severe AS.17 18 The AI – DSA was then 
tested against the 58 170 individuals with a native AV, with 
guideline-applicable AS data reported.

Statistical analyses
Given the size and scope of National Echo Database of 
Australia (NEDA) cohort (>5 00 000 individuals with 
>1 million echocardiograms) collated on a consecutive 
basis, no formal power calculations were performed. 
Beyond those analyses described above, standard 
methods for describing grouped data, including means 
(±SD), median (IQR) and proportions (with 95% CIs)) 
were performed. Between-group comparisons included 
ANOVA, Student’s t-test and χ2 analyses where appro-
priate. Actual 5-year mortality was calculable in 1 04 204 
cases with complete 5-year follow-up. For each prede-
termined group identified, multiple logistic regression 
(entry model) was used to generate age-adjusted and 
sex-adjusted OR with 95% CI for 5-year mortality with the 
lowest probability group (as determined by the AI-DSA) 
set as the reference group. The same method was repeated 
for age-specific OR for men and women separately. All 
descriptive and survival analyses were performed with 
SPSS V.28.0 (IBM Corporation, Chicago, Illinois) and 

statistical significance accepted at a two-sided alpha of 
<0.05.

RESULTS
The performance of our AI-DSA to detect severe AS is 
shown in figure 2—the AUROC (95% CI) being close to 
one overall (0.986 (0.985 to 0.987)) and among those 
with impaired (LVEF <50%–0.986% (0.984 to 0.988)) 
to severely impaired (LVEF <30%–0.981% (0.975 to 
0.986)) left ventricular systolic function. The subsequent 
precision-recall of the AI-DSA to detect severe AS in 
those with more complete echocardiographic reports is 
shown in figure  3—the AUPR (95% CI) being close to 
0.9 overall (0.876 (0.869 to 0.883)) and among those 
with impaired (LVEF <50%–0.904% (0.892 to 0.915)) to 
severe impaired (LVEF <30%–0.897% (0.871 to 0.920)) 
left ventricular systolic function. An f1-derived threshold 
(the harmonic mean of precision/recall) based on the 
probability output of the AI-DSA was identified at 0.235—
figure 4. Among the 184 301 individuals comprising the 
test cohort, 80 971 (52.3%) did not have the minimum 
data to produce a probability output. Minimum data to 
allow for AS guideline application were also not available 

Figure 2  Performance of the model to detect severe AS. This graph shows the performance of the model underpinning the AI-
DSA to identify an aortic valve area of<1.0 cm2. AI-DSA, Artificial Intelligence Decision Support Algorithm; AS, aortic stenosis; 
FPR, false positive rate; LVEF, left ventricular ejection fraction; NEDA, National Echo Database of Australia; TPR, true positive 
rate.
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in 128 228 individuals (66.9%), noting that this predom-
inantly comprised echocardiograms without AS—Most 
echos with insufficient data to calculate the AVA had 
AV peak velocity ≤2 m/s (in 62 537 individuals, 55.9%). 
Notably, however, there was a small but important 
proportion of individuals with elevated AV peak velocities 
(≥3 m/s, 1356 individuals, 28.1%) had insufficient data to 
calculate the AVA using the continuity equation (n=1264 
(26.2%) without LVOT peak velocity and/or LVOT diam-
eter and n=1984 (41.1%) without AV VTI and/or LVOT 
VTI and/or LVOT diameter). All of these individuals had 
an AS probability determined by the AI.

Table  1 summarises the demographic and echocar-
diographic characteristics of the three main groups 
identified within the test cohort; comprising 177 073 
individuals (96.1% designated as low probability of severe 
AS, including 80 971 with a definitive AI-DSA probability 
score), 2606 (1.4% overall) identified as ‘increased 
risk’ of the moderate-to-severe AS phenotype and 4622 
(2.5% overall) identified as severe AS. Of the latter, 3566 
(77.2%) had severe AS according to clinical guidelines—
the AI-DSA identifying all such cases when possible.

Overall, there were statistically significant differences 
(p<0.001 all comparisons) between the three main 

groups, with exception of heart rate and left ventricular 
diastolic/systolic diameter. Low probability AS cases 
identified by the AI-DSA were significantly younger and 
comprised more women than those with a high proba-
bility of moderate-to-severe and severe AS, while demon-
strating more normal cardiac parameters. Conversely, 
the individuals the AI-DSI identified as high probability 
severe AS (the oldest, male predominant group) had 
appropriately high levels of AV, left ventricular and 
right ventricular dysfunction. Those identified with high 
probability moderate-to-severe AS also had high levels 
of cardiac dysfunction, but to a less extent. The specific 
comparison between those identified by the AI-DSA as a 
high probability of severe AS, versus those who met guide-
line criteria for severe AS, revealed minor, but statistically 
significant differences between the two in respect to AV 
function, indices of diastolic dysfunction and evidence of 
left ventricular remodelling (all worse in the guideline 
group). Overall, those identified as high probability of 
the severe AS phenotype by AI, but outside guidelines for 
severe AS, had findings typically found at the higher spec-
trum of currently reported moderate AS.

Actual 5 year mortality was 67.9% and 56.2% among the 
1896 and 903 individuals identified as high probability 

Figure 3  Precision-recall performance of the model to detect severe AS. This graph shows the precision values (true 
positives/(true positives+false negatives)) on the y-axis and recall values (true positives/(true positives+false positives) on the 
x-axis derived from the AI-DSA output. AI-DSA, Artificial Intelligence Decision Support Algorithm; AS, aortic stenosis; LVEF, left 
ventricular ejection fraction; NEDA, National Echo Database of Australia.
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severe and moderate-to-severe AS, respectively. This 
compared with a mortality rate of 22.9% in the low prob-
ability group—the age-adjusted and sex-adjusted OR 
(95% CI) for all-cause mortality being 1.82 (1.63 to 2.02) 
and 2.80 (2.57 to 3.06) for the moderate-to-severe and 
severe AS groups (figure 5). Within the low probability 
group, 5-year mortality was significantly lower in compar-
ison to the specific AI-DSA identified group (9068/47 345 
(19.2%)) than those with insufficient data (13 452/51 578 
(26.3%)); age-adjusted and sex-adjusted OR 1.60 (95% 
1.55 to 1.65, p<0.001). Within the high probability group, 
5-year mortality was significantly higher in those who met 
guideline criteria for severe AS (1438/2081 (69.1%)) 
compared with those identified by the AI-DSA (458/711 
(64.4%)); age-adjusted and sex-adjusted OR 1.26 (95% 
1.04 to 1.53, p=0.021)—figure 6. On a sex-specific basis, 
relative to the low probability group, the age-adjusted OR 
(95% CI) for 5-year all-cause mortality was consistently 
higher for the 49 120 women versus 54 160 men catego-
rised as moderate-to-severe AS (2.03 (1.74 to 2.36) vs 1.63 
(1.40 to 1.91)) and severe AS (3.00 (95% CI 2.68 to 3.40) 
vs 2.56 (95% CI 2.32 to 2.91)).

We examined the potential importance of a simple 
measure of the AVA compared with the probability 

assessment in a series of sensitivity analyses. Of the 29 102 
individuals with actual 5-year mortality follow-up data 
available, 1566 individuals had a calculated AVA <1 cm2, 
898 had an AVA 1.0 cm2 to <1.2 cm2, 1738 had AVA 1.2 
cm2 to <1.5 cm2, 4348 had an AVA 1.5 cm2 to <2 cm2 and 
20 552 had an AVA >2 cm2. As expected, each AVA group 
had an elevated 5-year mortality, with the highest risk in 
the lowest AVA group. However, the probability score 
transcended the AVA by continuing to predict mortality 
beyond each AVA group, providing an additional age-
adjusted and sex-adjusted hazard of 1.40 (1.06 to 1.86), 
p=0.019.

In a separate sensitivity analysis, we examined whether 
the AI probability could predict mortality risk in low-flow 
AS beyond the AVA alone. Of 341 patients with a recorded 
Stroke Volume Index below 35 mL/m2 and AVA <1 cm2, 
259 individuals (76.0%) had died within 5 years. After 
adjustment for age and sex, the AI probability continued 
to be independently highly associated with mortality (HR 
1.98, 95% CI 1.13 to 3.46, p=0.016), whereas low-flow low-
gradient severe AS was not independently associated with 
mortality (HR 1.29, 95% CI 0.89 to 1.87, p=0.17). These 
data confirm that the probability score is not confounded 
by the severity or type of AS.

Figure 4  Probability threshold of the model to detect severe AS. This graph shows the plots used to determine the F1-derived 
threshold based on the average of precision and recall of the AI-DSA to detect severe aortic stenosis (main red dotted line) 
overall (F1-derived probability threshold 0.235) and in those with a left ventricular ejection fraction <50% and <30%. It also 
shows (short black dotted line)—the 0.0625 probability threshold for identifying ‘moderate aortic stenosis’ group. AI-DSA, 
Artificial Intelligence Decision Support Algorithm; AS, aortic stenosis; LVEF, left ventricular ejection fraction; NEDA, National 
Echo Database of Australia.
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As a final analysis to determine whether the AI-DSA 
is simply mimicking expanded thresholds of risk 
based on AVA and Vmax (when available), we gener-
ated five new moderate-to-severe AS subgroups. These 
groups demonstrated the expected small increments 
in 5-year mortality, with the severe AS subgroup of 
AVA <1.0 cm2 (and Vmax >3.2 m/s) demonstrating 
the worst survival (see online supplemental table 
S1, figure S1–S3). The moderate (55.4%) and severe 
AS (65.4%) subgroups demonstrated the expected 
adverse 5-year mortality, with the comparator group 
experiencing 23.4% 5-year mortality (online supple-
mental figure S2). We also confirmed the high 5-year 
mortality for the two guideline-derived severe AS 
subgroups in addition to those without an AVA avail-
able (AVA <1.2 cm2 and Vmax >4.0 m/s, AVA <1.0 cm2 
and Vmax >3.2 m/s, and no AVA and Vmax>3.2 m/s, 
see online supplemental figure S3).

DISCUSSION
To our knowledge, this is the largest study to train and 
test the performance of an AI-DSA to interpret routinely 
acquired echocardiographic reporting data to tran-
scend the more traditional AVA calculation and identify 
the phenotype of more severe AS associated with high 
mortality. In almost 90 000 individuals with age, BSA, 
peak aortic velocity and LVEF recorded, the AI-DSA iden-
tified 5.2% as ‘high-probability’ for severe AS. Overall, 
23.8% of these cases were not guideline-defined severe 
AS. AUROC and precision-recall analyses consistently 
demonstrated excellent performance values (close to 
one) for all individuals, including those with impaired 
left ventricular systolic function. Compared with the 
low-probability group, the age-adjusted and sex-adjusted 
odds of 5-year mortality was 2.41-fold higher among 
those categorised as as high-probability severe AS (67.9% 
mortality), respectively. Our methodology is novel and 

Table 1  Distribution of the test cohort according to the AI-DSA outputs

ALL (n=1 84 301)

Aortic Stenosis Cohort (n=4622) Non-Severe AS Cohort (n=179 679)

High probability 
severe AS 
(n=4622)

Severe AS guideline 
(n=3566)

High probability 
moderate AS 
(n=2606)

Low probability 
severe AS 
(n=1 77 073)

Demographic profile

Age, years 61.8±17.8 79.0±11.9 78.9±12.1 77.1±12.3 61.1±17.6

Women, % 87 987 (47.7%) 2423 (52.4%) 1782 (50.0%) 1306 (50.1%) 84 258 (47.6%)

Clinical profile

Body mass index, kg/m2 (n=67 882) 28.1±6.4 26.7±5.8 26.8±5.8 28.3±6.5 28.1±6.4

Systolic | diastolic BP, mm Hg (n=21 005) 134±22 | 77±12 137±25 | 74±13 136±25 | 73±13 140±24 | 78±11 133±22 | 77±11

Heart rate, bpm (n=66 997) 72.4±15.5 73.1±15.6 73.3±15.7 72.4±15.3 73.0±15.5

Aortic valve profile

Peak velocity, m/s (n=1 26 929) 1.40 (1.20–1.70) 3.70 (3.10–4.29) 3.99 (3.10–4.44)** 2.80 (2.38–3.20) 1.40 (1.20–1.62)

Mean gradient, mm Hg (n=69 359) 4.50 (3.13–7.56) 31.00 (21.00–43.50) 35.50 (22.00–47.00)** 19.00 (14.70–24.00) 4.10 (3.00–6.06)

Aortic valve area, cm2 (n=61 073) 2.52 (1.93–3.16) 0.84 (0.69–0.98) 0.81 (0.67–0.93)** 1.21 (1.10–1.36) 2.60 (2.08–3.22)

≥ Mild aortic regurgitation (n=66 796) 17 514 (26.2%) 1410 (53.5%) 1518 (42.6%)** 915 (57.1%) 15 189 (24.3%)

Right ventricular function and dimensions

eRVSP, mm Hg (n=90 529) 37.3±11.9 45.7±14.2 45.7±14.3 46.2±12.5 36.7±11.5

TR peak velocity, m/s (n=87 199) 2.60±0.49 2.95±0.54 2.95±0.54 2.99±0.47 2.57±0.48

Left ventricular function and dimensions

Left atrial volume index, mL/m2 (n=54 305) 41.6±28.8 61.0±44.7 57.2±39.2** 94.3±56.2 39.9±25.9

LV diastolic dimension, cm (n=1 35 063) 4.68±0.73 4.61±0.80 4.59±0.79 4.91±0.95 4.68±0.72

LV systolic dimension, cm (n=1 06 935) 3.04±0.76 3.05±0.90 3.04±0.89 3.06±0.90 3.04±0.75

LV mass index, g/m2 (n=41 872) 82.8±25.1 106.0±30.7 115.0±34.7** 90.8±28.3 81.9±24.5

LV ejection fraction, % (n=1 36 650) 62±13 59±16 58±16 63±18 62±12

Septal E:e’ ratio (n=64 626) 10.60±5.03 17.30±8.49 17.20±8.46 15.10±5.76 10.40±4.77

Transmitral E/A ratio (n=1 16 143) 1.15±0.67 1.18±1.02 1.16±1.06* 1.29±1.23 1.15±0.65

Stroke volume index, mL/m2 (n=40 947) 40.1±11.7 36.5±14.6 35.8±14.8** 39.5±10.7 40.2±11.5

This table shows the demographic and echocardiographic profile of each group (including the key reference group—severe aortic stenosis according 
to guideline criteria (identified separately in blue) within the test cohort with a native aortic valve. *p<0.05 and **p<0.001 for the comparison between 
the two severe aortic stenosis groups. LV mass index calculated using the 2D ASE formula. Stroke volume index was derived from left ventricular 
outflow tract (LVOT) velocity time integral and the LVOT dimension.17 18

eRVSP, estimated right ventricular systolic pressure; LV, left ventricular; TR, tricuspid regurgitation.
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meets the growing calls for automated echocardiographic 
reporting, to identify patients reliably and consistently 
with AS phenotypes that may benefit from early clinical 
review and consideration for AV intervention.21 22

Recently, a range of AI techniques have been applied 
to expedite the diagnosis of (predominantly severe) AS 
and improve its prognostication following AV replace-
ment. In routine clinical practice, simple cardiac auscul-
tation augmented by a digital AI-assisted stethoscopes has 
potential to identify those requiring cardiac imaging.11 
A similar approach has been explored in relation to AI 
detection of characteristic T wave changes on surface 
electrocardiograms.23 Novel technology involving non-
invasive inertial sensors12 has also shown distinct pheno-
types can be identified using invasive haemodynamics and 
cardiac imaging, which strongly predict future clinical 
outcomes.6 22 Previously, we have demonstrated that the 
relationship between echocardiographic measurement 
variables could be automatically associated together to 
predict severe AS.13 This approach has been subsequently 
refined by applying newer machine learning techniques 
and clinical practice guideline criteria.17 18 Collectively, 
these studies have revealed the progressive nature of 
AV disease (involving valve calcification and myocar-
dial fibrosis) as well as the normalisation of AV func-
tion following surgical intervention.24 After trans-aortic 

valve intervention, a machine learning system involving 
multiple clinical, CT, electrocardiographic and echo-
cardiographic inputs was able to outperform standard 
clinical risk scores 1 year in predicting outcomes.25 Thus, 
there is increasing potential to apply machine learning 
techniques to streamline the identification of high-risk 
cases with AS in routine clinical care.26

Why should an AI system like ours add value to clinical 
practice, when conventionally, there is only a dichotomy 
of treatable cases in AS (symptomatic severe vs the rest)? 
Our primary goal is to highlight at-risk patients for timely 
clinical review, closer monitoring and guideline-directed 
therapy where appropriate. Typical changes associated 
with progressive AS include AV calcification, left ventric-
ular hypertrophy, diastolic dysfunction, increased left 
atrial pressure and pulmonary hypertension.15 These 
pathophysiological changes have been used to improve 
timely identification of individuals in need of AV replace-
ment, with the goal of improving clinical outcomes and 
minimising mortality risk.26 Although direct visualisation 
of the multiple interconnected layers inherent to the 
neural network is not possible, our AI-DSA automatically 
identifies the typical phenotypic AS features associated 
with progressive disease, including a gradient of mortality 
with increasing AS probability that remains independently 
predictive after adjustment for the traditionally measured 

Figure 5  Actual 5-year all-cause mortality according to three main outputs from the AI-DSA. This graph shows the 5- year 
actual mortality curves (all-cause and with no censoring of cases) for the three main output groups from the AI-DSA—with low 
probability individuals being the reference group). The ORs for age and sex were 1.08 (95% CI 1.08 to 1.08 per annum) and 
1.50 (95% CI 1.46 to 1.55 for men vs women). AI-DSA, Artificial Intelligence Decision Support Algorithm.
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AVA. Using a progression of probability of severe AS 
from the AI-DSA, it is possible to discriminate differing 
risk thresholds, as we have shown with identification of 
the severe phenotype (inside and outside of traditional 
guidelines) as well as the moderate-to-severe group of 
individuals who are also at increased mortality risk, and 
thereby highlighting at-risk individuals in need of clinical 
review.

Timely recognition of those at risk of dying from 
progressively worse AS remains a high-priority clin-
ical issue.2 Studies from a range of health systems have 
consistently demonstrated the under-treatment of 
severe AS with consequently high mortality rates.27 Low-
gradient AS, which can be technically challenging to 
diagnose, is particularly subjected to variation in clin-
ical interpretation of severity and under-represented in 
AV intervention.28 Our AI-DSA performs equally well in 
high-gradient AS and in low-gradient AS, with AUCROC 
and AUPR almost identical in normal EF, mildly impaired 
and severely impaired systolic function. Recent observa-
tions of a significant detection and treatment gap in AS 
have prompted ‘urgent calls to action’ by major cardi-
ology and echocardiography societies.21 29 Our AI-DSA 
can be directly incorporated into echocardiographic 
reporting systems, or applied to echo labs directly, 
thereby triggering an automated alert to the presence of 

conventional severe AS, in addition, those who require 
further consideration for action. When combined, these 
represented ~7% (ratio of 1:1) of all test cases with suffi-
ciently detailed reporting data. Critically, the AI-DSA 
output requires no modification of standard echocar-
diographic imaging or acquisition workflow. As recently 
reported by rECHOmend Investigators, it is possible 
that similar machine learning technology with a broader 
relevance to all forms of structural valvular disease has 
the potential facilitate meaningful recommendations for 
echocardiography in clinical practice.30

LIMITATIONS
The AI-DSA is not intended to replace human clinical 
decision-making, given some patients will have conditions 
(eg, dementia, frailty or systemic disease) precluding 
surgical management. Furthermore, it is currently inca-
pable of identifying other cardiac diseases that may 
adversely affect prognosis (eg, amyloid cardiomyopathy). 
Moreover, the AI-DSA is dependent on minimum echo-
cardiographic measurements being performed and could 
not deliver a definitive output in just over 50% of echocar-
diograms, although most missing aortic valve data were in 
patients without AS consistent with common echocardiog-
raphy practice. While affected individuals (who also had 

Figure 6  Actual 5-year all-cause mortality in the two severe AS groups (AI-DSA identified vs guidelines). This graph shows the 
5-year actual mortality curves (all-cause and with no censoring of cases) for the two output groups identified by the AI-DSA as 
severe aortic stenosis—according to clinical guideline criteria (black line) or otherwise (red line—reference group). The ORs for 
age and sex were 1.09 (95% CI 1.08 to 1.10 per annum) and 1.28 (95% CI 1.08 to 1.53 for men vs women). AI-DSA, Artificial 
Intelligence Decision Support Algorithm; AS, aortic stenosis.
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insufficient data to apply AS guideline criteria) had lower 
mortality than positively identified AS cases, it was higher 
than those more definitively identified as ‘low probability 
AS’. Although the AI-DSA reliably identifies low-gradient 
severe AS, this form of AS is typically associated with 
other cardiac diseases. Given that data from a large multi-
cultural Australian cohort were used to train and test 
the AI-DSA, it has yet to be tested in other geographic 
regions/health systems or specific ethnic groups. Crit-
ically, we were unable to discriminate between sympto-
matic and non-symptomatic severe AS and NEDA does 
not (currently) capture potentially confounding data on 
comorbidities, hospital episodes and/or pharmacothera-
pies. The AI-DSA has yet to be compared with the routine 
clinical detection and management of AS in respect to 
the cost-effective management of severe forms of AS.

CONCLUSIONS
In summary, we have demonstrated that a readily deploy-
able AI-DSA has the potential to identify individuals with 
the phenotype of more severe AS associated with poor 
survival (if left untreated). Consistent with calls from 
major cardiac societies, the AI-DSA raises an automatic 
alert when the results of routine echocardiography are 
being reported. It can do so without increasing the clin-
ical workload for the sonographer, echocardiography 
laboratory or the referring clinician. With further inte-
gration into current workflow, this AI-DSA could improve 
expedited identification of severe AS cases and more 
timely referral for therapy.

Twitter David Playford @PlayfordDavid

Acknowledgements  Dr Stewart is supported by the NHMRC of Australia 
(GNT1135894).

Contributors  The study design was conceived by SS and DP. ECHO IQ Pty Ltd 
developed the AI-DSA (EchoSolv®) and provided the optimal f1 probability (Dr 
Watts) but played no role in clinical data collection, data analysis, data outcome 
interpretation, or writing of the report. The data were independently analysed in a 
blinded fashion by Profs Stewart, Strange and Playford. SS drafted the first draft 
of the manuscript and did the sensitivity analyses. All authors contributed to the 
final version of the submitted manuscript. The corresponding author (Prof Strange) 
had full access to all the data (derived from the training and test groups) with the 
addition of mortality data, and the final responsibility to submit for publication.

Funding  National Health & Medical Research Council of Australia and ECHO IQ Pty 
Ltd. Drs Strange and Playford are the Co-Principal Investigators and Directors of 
NEDA Ltd (a not-for-profit research entity). NEDA has received investigator-initiated 
funding support from Novartis Pharmaceuticals, Pfizer Pharmaceuticals, ECHO IQ 
and Edward Lifesciences in the past 3 years. Dr Stewart has received consultancy 
fees from NEDA and ECHO IQ. The funders played no role in the overall study design.

Competing interests  Profs Stewart, Playford and Strange have previously 
received consultancy/speaking fees from Edwards Lifesciences. Profs Playford and 
Strange have received consultancy fees from Medtronic, Edwards Lifesciences, 
Abbott Laboratories and ECHO IQ Pty Ltd. Dr Watts is employed by ECHO IQ Pty Ltd.

Patient consent for publication  Not applicable.

Ethics approval  All data were derived from the National Echo Database of 
Australia (NEDA). NEDA has obtained ethical approvals across Australia from 
all relevant Human Research Ethics Committees. A patient consent waiver was 
authorised for all retrospectively acquired data used in these analyses.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available upon reasonable request.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Geoff Strange http://orcid.org/0000-0001-6800-7119
Simon Stewart http://orcid.org/0000-0001-9032-8998
Andrew Watts http://orcid.org/0000-0003-3300-9127
David Playford http://orcid.org/0000-0003-4492-1103

REFERENCES
	 1	 Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and 

stroke Statistics-2022 update: A report from the American heart 
Association. Circulation 2022;145:e153–639. 

	 2	 Stewart S, Afoakwah C, Chan Y-K, et al. Counting the cost 
of premature mortality with progressively worse aortic 
stenosis: A clinical cohort study. The Lancet Healthy Longevity 
2022;3:e599–606. 

	 3	 Postolache A, Tridetti J, Nguyen Trung ML, et al. Moderate 
aortic stenosis: a new actor has come into stage. J Thorac Dis 
2020;12:7064–8. 

	 4	 Badiani S, Bhattacharyya S, Aziminia N, et al. Moderate aortic 
stenosis: what is it and when should we intervene Interv Cardiol 
2021;16:e09. 

	 5	 San Román JA, Vilacosta I, Antunes MJ, et al. The 'wait for 
symptoms' strategy in asymptomatic severe aortic stenosis. Heart 
2020;106:1792–7. 

	 6	 Kwak S, Everett RJ, Treibel TA, et al. Markers of myocardial damage 
predict mortality in patients with aortic stenosis. J Am Coll Cardiol 
2021;78:545–58. 

	 7	 Strange G, Stewart S, Celermajer D, et al. Poor long-term survival 
in patients with moderate aortic stenosis. J Am Coll Cardiol 
2019;74:1851–63. 

	 8	 Popma JJ, Adams DH, Reardon MJ, et al. Transcatheter aortic valve 
replacement using a self-expanding Bioprosthesis in patients with 
severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol 
2014;63:1972–81. 

	 9	 Stewart S, Chan YK, Playford D, et al. Incident aortic stenosis 
in 49 449 men and 42 229 women investigated with routine 
echocardiography. Heart 2022;108:875–81. 

	10	 Li SX, Patel NK, Flannery LD, et al. Trends in utilization of aortic 
valve replacement for severe aortic stenosis. J Am Coll Cardiol 
2022;79:864–77. 

	11	 Chorba JS, Shapiro AM, Le L, et al. Deep learning algorithm for 
automated cardiac murmur detection via a Digital stethoscope 
platform. J Am Heart Assoc 2021;10:e019905. 

	12	 Shokouhmand A, Aranoff ND, Driggin E, et al. Efficient detection 
of aortic stenosis using morphological characteristics of 
Cardiomechanical signals and heart rate variability parameters. Sci 
Rep 2021;11:23817. 

	13	 Playford D, Bordin E, Mohamad R, et al. Enhanced diagnosis of 
severe aortic stenosis using artificial intelligence: A proof-of-concept 
study of 530,871 echocardiograms. JACC Cardiovasc Imaging 
2020;13:1087–90. 

	14	 Sengupta PP, Shrestha S, Kagiyama N, et al. A machine-learning 
framework to identify distinct phenotypes of aortic stenosis severity. 
JACC Cardiovasc Imaging 2021;14:1707–20. 

	15	 Kang N gyu, Suh YJ, Han K, et al. Performance of prediction models 
for diagnosing severe aortic stenosis based on aortic valve calcium 
on cardiac computed tomography: incorporation of Radiomics and 
machine learning. Korean J Radiol 2021;22:334. 

	16	 Solomon MD, Tabada G, Allen A, et al. Large-scale identification of 
aortic stenosis and its severity using natural language processing on 
electronic health records. Cardiovasc Digit Health J 2021;2:156–63. 

 on July 25, 2023 by guest. P
rotected by copyright.

http://openheart.bm
j.com

/
O

pen H
eart: first published as 10.1136/openhrt-2023-002265 on 25 July 2023. D

ow
nloaded from

 

https://twitter.com/PlayfordDavid
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-6800-7119
http://orcid.org/0000-0001-9032-8998
http://orcid.org/0000-0003-3300-9127
http://orcid.org/0000-0003-4492-1103
http://dx.doi.org/10.1161/CIR.0000000000001052
http://dx.doi.org/10.1016/S2666-7568(22)00168-4
http://dx.doi.org/10.21037/jtd-2020-48
http://dx.doi.org/10.15420/icr.2021.04
http://dx.doi.org/10.1136/heartjnl-2020-317323
http://dx.doi.org/10.1016/j.jacc.2021.05.047
http://dx.doi.org/10.1016/j.jacc.2019.08.004
http://dx.doi.org/10.1016/j.jacc.2014.02.556
http://dx.doi.org/10.1136/heartjnl-2021-319697
http://dx.doi.org/10.1016/j.jacc.2021.11.060
http://dx.doi.org/10.1161/JAHA.120.019905
http://dx.doi.org/10.1038/s41598-021-03441-2
http://dx.doi.org/10.1038/s41598-021-03441-2
http://dx.doi.org/10.1016/j.jcmg.2019.10.013
http://dx.doi.org/10.1016/j.jcmg.2021.03.020
http://dx.doi.org/10.3348/kjr.2020.0099
http://dx.doi.org/10.1016/j.cvdhj.2021.03.003
http://openheart.bmj.com/


11Strange G, et al. Open Heart 2023;10:e002265. doi:10.1136/openhrt-2023-002265

Valvular heart disease

	17	 Otto CM, Nishimura RA, Bonow RO, et al. ACC/AHA guideline for 
the management of patients with valvular heart disease: A report 
of the American college of cardiology/American heart Association 
joint committee on clinical practice guidelines. Circulation 
2021;143:e72–227. 

	18	 Vahanian A, Beyersdorf F, Praz F, et al. ESC/EACTS guidelines for 
the management of valvular heart disease. Eur J Cardiothorac Surg 
2021;60:727–800. 

	19	 O’Connor MK, Dai H, Fraga GR. PRAME immunohistochemistry 
for Melanoma diagnosis: A STARD-compliant diagnostic accuracy 
study. J Cutan Pathol 2022;49:780–6. 

	20	 Powers J, Ball J, Adamson L, et al. Effectiveness of the National 
death index for establishing the vital status of older women in the 
Australian longitudinal study on women’s health. Aust N Z J Public 
Health 2000;24:526–8. 

	21	 Lindman BR, Lowenstern A. The alarm Blares for Undertreatment 
of aortic stenosis: how will we respond? J Am Coll Cardiol 
2022;79:878–81. 

	22	 Lachmann M, Rippen E, Schuster T, et al. Subphenotyping of 
patients with aortic stenosis by Unsupervised Agglomerative 
clustering of echocardiographic and hemodynamic data. JACC 
Cardiovasc Interv 2021;14:2127–40. 

	23	 Jentzer JC, Kashou AH, Lopez-Jimenez F, et al. Mortality 
risk stratification using artificial intelligence-augmented 
electrocardiogram in cardiac intensive care unit patients. Eur Heart J 
Acute Cardiovasc Care 2021;10:532–41. 

	24	 Casaclang-Verzosa G, Shrestha S, Khalil MJ, et al. Network 
tomography for understanding Phenotypic presentations in 
aortic stenosis. JACC Cardiovasc Imaging 2019;12:236–48. 

	25	 Hernandez-Suarez DF, Kim Y, Villablanca P, et al. Machine 
learning prediction models for in-hospital mortality after 
Transcatheter aortic valve replacement. JACC Cardiovasc Interv 
2019;12:1328–38. 

	26	 Namasivayam M, Myers PD, Guttag JV, et al. Predicting outcomes 
in patients with aortic stenosis using machine learning: the aortic 
stenosis risk (asterisk) score. Open Heart 2022;9:e001990:9.:. 

	27	 Strom JB, Playford D, Stewart S, et al. Increasing risk of mortality 
across the spectrum of aortic stenosis is independent of 
Comorbidity & treatment: an international, parallel cohort study of 
248,464 patients. PLoS One 2022;17:e0268580. 10.1371/journal.​
pone.0268580 Available: https://doi.org/10.1371/journal.pone.​
0268580

	28	 Snir AD, Ng MK, Strange G, et al. Prevalence and outcomes of low-
gradient severe aortic stenosis-from the National echo database of 
Australia. J Am Heart Assoc 2021;10:e021126. 

	29	 Barnhart GR, Martin RP, Thomas JD, et al. The need for 
echocardiography alerts for aortic stenosis: the time has come. J Am 
Soc Echocardiogr 2020;33:355–7. 

	30	 Ulloa-Cerna AE, Jing L, Pfeifer JM, et al. rECHOmmend: an 
ECG-based machine learning approach for identifying patients at 
increased risk of Undiagnosed structural heart disease detectable by 
echocardiography. Circulation 2022;146:36–47. 

 on July 25, 2023 by guest. P
rotected by copyright.

http://openheart.bm
j.com

/
O

pen H
eart: first published as 10.1136/openhrt-2023-002265 on 25 July 2023. D

ow
nloaded from

 

http://dx.doi.org/10.1161/CIR.0000000000000923
http://dx.doi.org/10.1093/ejcts/ezab389
http://dx.doi.org/10.1111/cup.14267
http://dx.doi.org/10.1111/j.1467-842x.2000.tb00504.x
http://dx.doi.org/10.1111/j.1467-842x.2000.tb00504.x
http://dx.doi.org/10.1016/j.jacc.2021.12.024
http://dx.doi.org/10.1016/j.jcin.2021.08.034
http://dx.doi.org/10.1016/j.jcin.2021.08.034
http://dx.doi.org/10.1093/ehjacc/zuaa021
http://dx.doi.org/10.1093/ehjacc/zuaa021
http://dx.doi.org/10.1016/j.jcmg.2018.11.025
http://dx.doi.org/10.1016/j.jcin.2019.06.013
http://dx.doi.org/10.1136/openhrt-2022-001990
http://dx.doi.org/10.1371/journal.pone.0268580
https://doi.org/10.1371/journal.pone.0268580
https://doi.org/10.1371/journal.pone.0268580
http://dx.doi.org/10.1161/JAHA.121.021126
http://dx.doi.org/10.1016/j.echo.2019.11.005
http://dx.doi.org/10.1016/j.echo.2019.11.005
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.057869
http://openheart.bmj.com/

	Enhanced detection of severe aortic stenosis via artificial intelligence: a clinical cohort study
	Abstract
	Introduction﻿﻿
	Methods
	Study design
	Data sources
	Development of the AI model
	Development of the guideline-quarantined patients
	Evaluating the model
	Testing the ﻿AI-DSA﻿
	Individual classification according to AI-DSA outputs
	Statistical analyses

	Results
	Discussion
	Limitations
	Conclusions
	References


